Optimising Power Bl with Azure Synapse Analytics Serverless SQL Pools

Power BI Fest Saturday 20th November 2021

Silver Data Analytics Silver Data Platform

Microsoft

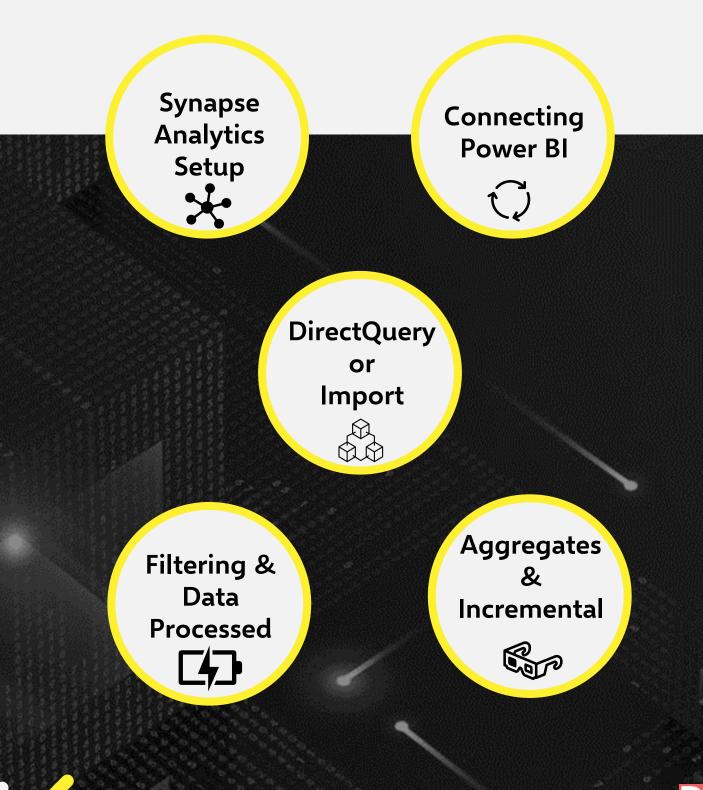
Partner

Andy Cutler

Independent BI/DW Consultant

Azure Data Platform & Power Bl

datahai.co.uk/blog


serverlesssql.com

twitter.com/MrAndyCutler

linkedin.com/in/andycutler/

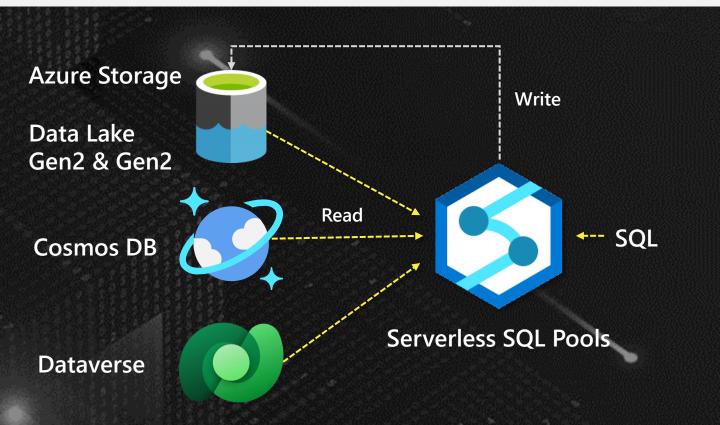
Session Overview

Synapse Analytics

Serverless SQL Pools

Power BI Fest

Serverless SQL Pools


Query external data from Azure Storage, Cosmos DB and Dataverse

Familiar SQL objects

- Databases
- Stored Procedures
- DMVs
- Views
- External Tables

Power BI Fest

Serverless SQL Pools cost is based on the amount of data processed and not compute/time to execute

~\$5 per 1TB Data Processed (Write/Read)

No data is stored within Serverless SQL Pools

Serverless SQL Scenarios

Microsoft state 3 scenarios that Serverless SQL Pools can be useful for

Data Exploration

Analyse CSV, Parquet & JSON data stored in Azure Storage using common T-SQL commands. Query Cosmos DB in realtime.

Logical Data Warehouse

Create a relational structure over raw data stored in Azure Storage and Cosmos DB without transforming and moving data.

Data Transformation

Data stored in Azure Storage can be transformed using T-SQL and datasets returned to BI tools such as Power BI

We can create a Synapse Analytics workspace and only ever use the Serverless SQL Pools service for data processing

We can create Views and External Tables over disparate Data Lake data to bring this data together

Use Serverless SQL Pools to do the "heavy lifting" in terms of data processing when data is stored in a Data Lake

Creating a Synapse Analytics Workspace

A Synapse Analytics Workspace can be provisioned using:

- Azure Portal
- PowerShell
- CLI
- ARM
- Bicep

We can create a Synapse Analytics workspace in just a few steps:

Specify the Azure Subscription

Select or Create a Resource Group

Enter a Workspace name

Select or Create a Storage Account (Data Lake Gen2)

Enter a file system name

Specify SQL admin credentials

Specify if workspace is created in a Managed Virtual Network

Power Bl

Connecting to Serverless SQL Pools

Connection

Serverless SQL Pools has a separate endpoint which other data services can connect to and issue SQL statements

Serverless SQL endpoint ::

ondemand.sql.azuresynapse.net

SQL Server Management Studio

Azure Data Studio

Azure Analysis Services

Serverless SQL Pools
Endpoint

Power BI (Datasets & Dataflows)

Data Example

We have Web Telemetry data being streamed into Azure Data Lake Gen2 into a folder structure

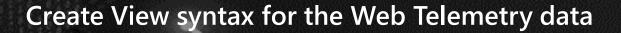
In the Web Telemetry data we have 7 columns

UserID 💌	EventType	EventDateSource	ProductID	🕶 URL 💽	Device 💌	SessionViewSeconds 💌
29640	browseproduct	10/10/2021 09:08	998	/product/998	mobile	60
29853	putinbasket	10/10/2021 09:08	753	/product/753	рс	49
30071	putinbasket	10/10/2021 09:08	829	/product/829	tablet	117
29711	browseproduct	10/10/2021 09:08	899	/product/899	mobile	98
29733	putinbasket	10/10/2021 09:08	985	/product/985	tablet	8
30047	browseproduct	10/10/2021 09:08	996	/product/996	tablet	37
29873	browseproduct	10/10/2021 09:08	982	/product/982	tablet	67
29589	purchasedproduct	10/10/2021 09:08	886	/product/886	tablet	13
29925	browseproduct	10/10/2021 09:08	806	/product/806	mobile	66
29663	browseproduct	10/10/2021 09:08	915	/product/915	mobile	44

The file format is Parquet

There is a 3 level folder structure with the Parquet data being stored in the YYYY-MM-DD folder

Source


Data

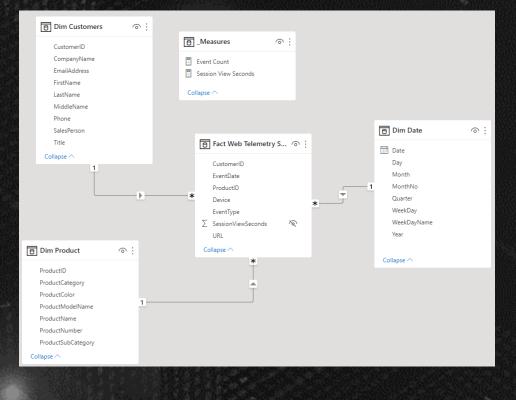
47

The Date column is surfaced in a View in Serverless as a Date column

Creating SQL View

We can create a SQL View in Serverless SQL Pools to cast structure over this data stored in the Data Lake


```
CREATE VIEW PBI.vwFactWebTelemetryLargev2
AS
SELECT
   UserID,
    EventType,
    ProductID,
    [URL],
    Device,
    SessionViewSeconds,
    EventDate,
    CAST(fct.filepath(1) AS SMALLINT) AS FilePathYear,
    CAST(fct.filepath(2) AS TINYINT) AS FilePathMonth,
    CAST(fct.filepath(3) AS DATE) AS EventDateSource
FROM
OPENROWSET
    BULK 'webvisitmessagesoptimised/EventYear=*/EventMonth=*/EventDateTime=*/*.parquet',
    DATA SOURCE = 'ExternalDataSourceDataLake',
    FORMAT = 'Parquet'
)
WITH
    UserID INT,
    EventType VARCHAR(20),
    ProductID SMALLINT,
    [URL] VARCHAR(50),
    Device VARCHAR(10),
    SessionViewSeconds INT,
    EventDate DATE
AS fct
```


SQL

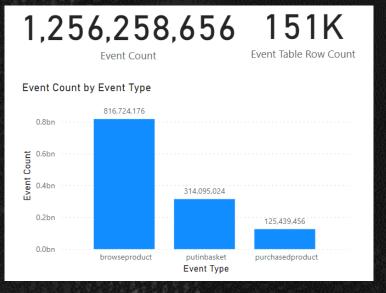
Import

We can load data into Power BI from Serverless SQL Pools

We can keep the granularity the same as the source

In this example we're importing 600K rows into a Power BI data model

We are performing the same data modelling operations as with any imported data source



Bear in mind the volume of source data as if data is being loaded to a Data Lake, the volume could grow very quickly

Import with Grouping

Larger datasets may require aggregating

We must ensure as much processing is pushed to Serverless SQL Pools (Query Folding)

In this example we're aggregating over 1.2B rows into 150K rows using Power Query Grouping

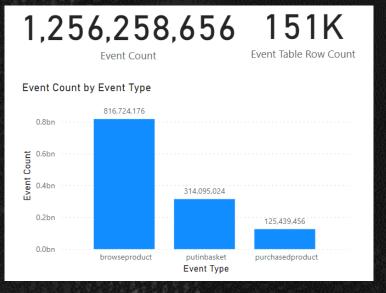
Aggregate

Data

We are performing the same data modelling operations as with any imported data source

Native Query

```
select [rows].[CustomerID] as [CustomerID],
     [rows].[EventType] as [Event Type],
     [rows].[ProductID] as [ProductID],
     [rows].[Device] as [Device],
     [rows].[EventDate] as [EventDate],
     count(1) as [TotalEventCount],
     sum([rows].[SessionViewSeconds]) as [TotalEventSeconds]
from [PBI].[vwFactWebTelemetrySmall] as [rows]
group by [CustomerID],
     [EventType],
     [ProductID],
     [Device],
     [EventDate]
```


Serverless SQL Pools is running the aggregate query due to Query Folding

We have lost the granularity of the source data

Import with Grouping

Larger datasets may require aggregating

We must ensure as much processing is pushed to Serverless SQL Pools (Query Folding)

In this example we're aggregating over 1.2B rows into 150K rows using Power Query Grouping

Aggregate

Data

We are performing the same data modelling operations as with any imported data source

Native Query

```
select [rows].[CustomerID] as [CustomerID],
     [rows].[EventType] as [Event Type],
     [rows].[ProductID] as [ProductID],
     [rows].[Device] as [Device],
     [rows].[EventDate] as [EventDate],
     count(1) as [TotalEventCount],
     sum([rows].[SessionViewSeconds]) as [TotalEventSeconds]
from [PBI].[vwFactWebTelemetrySmall] as [rows]
group by [CustomerID],
     [EventType],
     [ProductID],
     [Device],
     [EventDate]
```

Serverless SQL Pools is running the aggregate query due to Query Folding

We have lost the granularity of the source data

DirectQuery

We can connect without needing to import data

We have access to the same granularity as the source

Data is accessible as soon as received in the source

Request content

```
23617658
```

```
SELECT
TOP (1000001) [t2].[Product Category],
COUNT_BIG(*)
AS [a0]
FROM
((
select [$Table].[CustomerID] as [CustomerID],
   [$Table].[EventType] as [EventType],
   [$Table].[ProductID] as [ProductID],
   [$Table].[URL] as [URL],
   [$Table].[Device] as [Device],
   [$Table].[SessionViewSeconds] as [SessionViewSeconds],
    [$Table].[EventDateSource] as [EventDateSource],
   [$Table].[EventDate] as [EventDate]
from [PBI].[vwFactWebTelemetryLarge] as [$Table]
) AS [t3]
```

LEFT OUTER JOIN

```
(
select [_].[ProductID] as [ProductID],
    [_].[ProductName] as [ProductName],
    [_].[ProductColor] as [ProductColor],
    [_].[ProductColor] as [ProductColor],
    [_].[ProductCategory] as [Product Category],
    [_].[ProductSubCategory] as [ProductSubCategory]
from [PBI].[vwDimProduct] as [_]
) AS [t2] on
(
[t3].[ProductID] = [t2].[ProductID]
)
)
```

GROUP BY [t2].[Product Category]

Keep accessing source rows with no loss of granularity

No need to import as we're connecting live

Queries are run by Serverless SQL Pools

Performance will not be as fast as import

Filtering in DirectQuery

We can use the filepath() columns to filter and partition prune to reduce the data processed

We have 2 Date columns in the Fact View: EventDateSource & EventDate

EventDateSource:

Original Event date which is stored in the Parquet data

Serverless SQL Pools needs to scan all folders and files

EventDate:

Result of the filepath() function to return the folder name

No support to join to another table and have that table filter, E.G Date dimension

	\bigtriangledown Filters $>$ $>$	<	Fields
Is (All) Filter type ① Advanced filtering Show items when the value is on or after 03/10/2021 12 00 AM Image: Constraint of the product of the produc	✓ Search	<	✓ Search
	Event Date is (All) Filter type ① Advanced filtering Show items when the value is on or after 03/10/2021 AM 2 0 AM	sualizations	 > Im Dim Customers > Im Dim Date > Im Dim Product > Im Fact Web Telemetry Large Device Event Date Event Date Source Event Type

Apply

We can use the Date dimension as context rather than filtering

We can use the option to add a single apply button for filters and slicers

263,23,23

Power BI Fest

Engine

Pushing Processing to Serverless SQL Pools

Aggregates

We can import an aggregate table into Power BI and keep the source granularity accessible using DirectQuery

Improve Speed

We can use Aggregations to reduce the time to answer specific aggregate queries

Dim Customers dhsynapsev2-ondemand.s CustomerID					_	elemetry A 📎 🗄	
CustomerID		Event Average	1		CustomerID	R	
		Collapse 🔿			EventDate	Ň	
CompanyName					ProductID	Ň	
EmailAddress				*	Device	N	
FirstName			·	Ť	EventDateSour	irce X	
LastName	1			*	EventType	N	
MiddleName	1				∑ TotalEventCou	unt À	
Phone					∑ TotalViewSeco	onds A	
SalesPerson		× ×	k				
Title		Fact Web Tele	metry Lar 👝 :		Collapse 🔿		
llapse 🔿		Ln↓ dhsynapsev2-on	demand.sql			*	
Dim Product dhsynapsev2-ondemand.s	۰ :	EventDateSource ProductID Device	2		Ĩ	Dim Date	emand.s
ProductID		EventDate		*		Date	
Product Category		★ EventType ∑ SessionViewSecc		*		DateKey	N
ProductColor	Ê Î	Z Session viewsecc	onas	-		∑ Day	
ProductModelName	1	ORE		L	1	Month	
ProductName						∑ MonthNo	
ProductNumber						∑ Quarter	
ProductSubCategory						∑ WeekDay	
Collapse ^						WeekDayName	
compact of		Collapse 🔨				∑ Year	

We must be mindful of query coverage to ensure aggregations are being hit as much as possible

Incremental Loading

We can setup incremental loading if there is a date/time column

Use the result of a filepath function to return a date/time value from the source folder to enable partition pruning

If we are able to import data (either row by row, or by aggregating/grouping) then we can take advantage of incremental refresh in Power BI and partition pruning in Serverless SQL Pools.

Incremental refresh						
You can improve the speed of refresh for large tables by using incremental refresh. This setting will apply once you've published a report to the Power BI service.						
Once you've deployed this table to the Power BI service, you won't be able to download it back to Power BI Desktop. <u>Learn more</u>						
Table Incremental refresh Fact Web Telemetry Large On						
Store rows where column "EventDateSource" is in the last: 1 Years Years						
Refresh rows where column "EventDateSource" is in the last: 30 Days						
Detect data changes Learn more Only refresh complete days Learn more						

We can use filepath column EventDate to enable incremental refresh.

This will then enable "partition pruning" in Serverless SQL Pools to reduce data processed and increase read performance

Filtering with Incremental

We can optimise the incremental refresh by using an existing source folder partition scheme

EventDateSource column is a Date column within the Parquet data

EventDate	-	Contraction EventDateSource	" T
	17/10/2021	17/10/2021	00:00:00
	09/09/2021	09/09/2021	00:00:00
	05/09/2021	05/09/2021	00:00:00
	12/09/2021	12/09/2021 (00:00:00
	04/10/2021	04/10/2021	00:00:00

CREATE VIEW PBI.vwFactWebTelemetryLarge AS SELECT EventDate,

EventDate column is a Date column returned by the filepath() function

Efficiency

EventDate	. T	EventDateSource	-
25/09/2021 00:0	00:00	25/0	9/2021
12/09/2021 00:0	00:00	12/0	9/2021
29/09/2021 00:0	00:00	29/0	9/2021
23/10/2021 00:0	00:00	23/1	0/2021
03/10/2021 00:0	00:00	03/1	0/2021

CREATE VIEW PBI.vwFactWebTelemetryLarge AS SELECT CAST(fct.filepath(3) AS DATE) AS FilePathDate,

If we use the Date column from the data within the Parquet file(s) then Serverless SQL Pools needs to scan all folders and files to find the relevant data

Power BI Fest

Filtering with Incremental

We can optimise the incremental refresh by using an existing source folder partition scheme

Efficiency

Difference in Data Processed:

Incremental set for last 30 days

None-Partitioned Date Column:

Partitioned Date Column:

Initial Refresh:

- History: 26.3GB
- Incremental: ~120GB (30 x 4)

Initial Refresh:

- History: 26.3GB
- Incremental: 17GB

Incremental Refresh:

• Incremental: ~120GB (30 x 4)

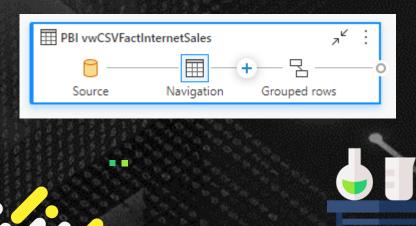
Incremental Refresh:

• Incremental: 17GB

Dataflows

Using Serverless SQL Pools to do the "heavy lifting" for Power BI

We can use Query Fold transformations such as Grouping down to Serverless SQL Pools

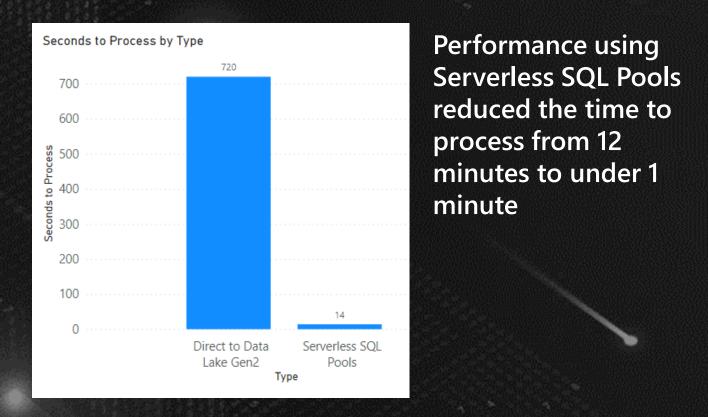


3 x 1.5GB CSV files (4.5GB total, 22M Rows)

Connecting to Data Lake Gen2 and using Grouping: 120K Rows

Transform file from Query\He	lper queries			
fx Transform file	:	FactInternetSales	∽ 2 :	
fx	1 step	🖼 🍸 ABC	8 steps	
Transform file from Query\He	Iper queries	Transform file from Query\H	Helper queries	Transform file from Query
⁰¹⁰ ₁₀₁ Sample file	÷	Parameter	÷ .	Transform Sample file
	3 steps		0 1 step	ABC 3 steps

Connecting to Serverless SQL Pools View and using Grouping: 120K Rows



Dataflows

Using Serverless SQL Pools to do the "heavy lifting" for Power BI

We can use Query Fold transformations such as Grouping down to Serverless SQL Pools

Workspace Settings:

- Premium-Per-User
- Enhanced Compute Engine Settings: On

Azure Analysis Services

We can also connect Azure Analysis Service and import data

Data Processing ? Processing Progress Processing gets updated data from the original data sources 0 Cancelled 1 Total ÷, 1 Remaining 0 Success 0 Error Details Work Item Status Details Web Telemetry Partitioned ved 22,020,001 row Detai Stop Processing Close

We can connect to Serverless SQL Pools from Azure Analysis Services and import and model data

Azure Analysis Services can scale to 400GB RAM

In this example, the Fact table has been partitioned

Del	4 Total 0 Cancelled 0 Success 0 Error							
	Work Item Status Details							
€	Web Telemetry Partitioned 0909-1109	Retrieved 29,840,001 rows			Deta	<u>iils</u>		
•••	Web Telemetry Partitioned 1209-1409	Retrieved 26,470,001 rows			Deta	<u>iils</u>		
•••	Web Telemetry Partitioned 1509-1709	Retrieved 27,960,001 rows			Deta	<u>iils</u>		
•••	Web Telemetry Partitioned 1809-2009	Retrieved 27,790,001 rows			Deta	<u>iils</u>		

References

lcons

https://www.flaticon.com/packs/design-thinking-154 https://www.flaticon.com/packs/cloud-computing-network-7 https://www.flaticon.com/packs/business-797 https://www.flaticon.com/packs/startups-45 https://www.flaticon.com/packs/ninja-53 https://www.flaticon.com/packs/biochemistry-51 https://www.flaticon.com/packs/social-marketing-6 https://www.flaticon.com/packs/organization-10

